Properties

Label 8400.i.2.b1.a1
Order $ 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times C_{420}$
Order: \(4200\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \)
Index: \(2\)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 279 \end{array}\right), \left(\begin{array}{rr} 316 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{rr} 33 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 211 \end{array}\right), \left(\begin{array}{rr} 48 & 0 \\ 0 & 307 \end{array}\right), \left(\begin{array}{rr} 79 & 0 \\ 0 & 16 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 67 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, abelian (hence metabelian and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $D_{420}:C_{10}$
Order: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{210}.C_6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $(C_6\times D_4).C_2^3.S_5$
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}\times C_{420}$
Normalizer:$D_{420}:C_{10}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{420}:C_{10}$
Maximal under-subgroups:$C_{10}\times C_{210}$$C_5\times C_{420}$$C_5\times C_{420}$$C_{10}\times C_{140}$$C_2\times C_{420}$$C_2\times C_{420}$$C_2\times C_{420}$$C_2\times C_{420}$$C_{10}\times C_{60}$

Other information

Möbius function$-1$
Projective image$D_{210}$