Properties

Label 840.7.15.a1.a1
Order $ 2^{3} \cdot 7 $
Index $ 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7:C_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(15\)\(\medspace = 3 \cdot 5 \)
Exponent: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Generators: $a, a^{4}, b^{15}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{105}:C_8$
Order: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3\times F_5\times F_7$
$\operatorname{Aut}(H)$ $C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_7:C_{24}$
Normal closure:$C_{35}:C_8$
Core:$C_{28}$
Minimal over-subgroups:$C_{35}:C_8$$C_7:C_{24}$
Maximal under-subgroups:$C_{28}$$C_8$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$1$
Projective image$C_3\times D_{35}$