Subgroup ($H$) information
| Description: | $C_8$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(105\)\(\medspace = 3 \cdot 5 \cdot 7 \) |
| Exponent: | \(8\)\(\medspace = 2^{3} \) |
| Generators: |
$a$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group.
Ambient group ($G$) information
| Description: | $C_{105}:C_8$ |
| Order: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
| Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^3\times F_5\times F_7$ |
| $\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{24}$ | ||
| Normalizer: | $C_{24}$ | ||
| Normal closure: | $C_{35}:C_8$ | ||
| Core: | $C_4$ | ||
| Minimal over-subgroups: | $C_7:C_8$ | $C_5:C_8$ | $C_{24}$ |
| Maximal under-subgroups: | $C_4$ |
Other information
| Number of subgroups in this conjugacy class | $35$ |
| Möbius function | $-1$ |
| Projective image | $C_3\times D_{35}$ |