Properties

Label 839808.ig.54.BT
Order $ 2^{6} \cdot 3^{5} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,14,4)(3,9,12)(5,17,15)(10,18,13), (20,25)(21,24), (20,24)(21,25), (1,17,6,4,15,16,14,5,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^6.S_4\wr C_2$
Order: \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^4.C_6.C_2^3$
$\operatorname{Aut}(H)$ $C_6^4.C_6^2.C_2^2$
$W$$C_6^4:D_6$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4:D_6$
Normal closure:$C_3^6.\POPlus(4,3)$
Core:$C_2\times C_6^3$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.S_4\wr C_2$