Properties

Label 839808.hq.9.D
Order $ 2^{7} \cdot 3^{6} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_6^4.S_3^2$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,18,5,13,2,8)(3,6,12)(4,14,7,16,11,9)(10,17,15)(19,23,20,22)(21,26,25,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^5.C_3\wr S_3^2$
Order: \(839808\)\(\medspace = 2^{7} \cdot 3^{8} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^3.C_6^3.C_2^3$
$\operatorname{Aut}(H)$ $C_2^8.D_5^2.C_2^3$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
$W$$C_6^4.S_3^2$, of order \(46656\)\(\medspace = 2^{6} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.(C_6\times S_3^2)$
Normal closure:$C_6^4.C_6:S_3^2$
Core:$(C_3^2\times C_6^3).S_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed