Properties

Label 93312.ef
Order \( 2^{7} \cdot 3^{6} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{10} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \cdot 3^{2} \)
Perm deg. $28$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23), (1,3)(2,5,4,7,6,8)(9,11,15)(10,13,16)(12,17,14)(18,20,23)(19,21,24,26,25,22), (1,3)(2,5,4,7,6,8)(9,11,16)(10,13,14)(12,17,15)(18,20,22,19,21,23)(24,26,25)(27,28) >;
 
Copy content gap:G := Group( (1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23), (1,3)(2,5,4,7,6,8)(9,11,15)(10,13,16)(12,17,14)(18,20,23)(19,21,24,26,25,22), (1,3)(2,5,4,7,6,8)(9,11,16)(10,13,14)(12,17,15)(18,20,22,19,21,23)(24,26,25)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23)', '(1,3)(2,5,4,7,6,8)(9,11,15)(10,13,16)(12,17,14)(18,20,23)(19,21,24,26,25,22)', '(1,3)(2,5,4,7,6,8)(9,11,16)(10,13,14)(12,17,15)(18,20,22,19,21,23)(24,26,25)(27,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(265012774723887707968659022886307501281503241141171732758474441328640283075530709716255790517896500729124998304354165593188719019170647601565513676905171588940872058064879042696444814813824644000254577165440779788749663525858333860713667850996607584283979222759437844686521780726083708245,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12;
 

Group information

Description:$C_2\times C_6^4.S_3^2$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.D_5^2.C_2^3$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 1111 2834 3240 38174 5184 37584 5184 93312
Conjugacy classes   1 13 34 10 744 3 116 3 924
Divisions 1 13 24 10 420 3 64 3 538
Autjugacy classes 1 10 14 5 175 1 19 1 226

Minimal presentations

Permutation degree:$28$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 6 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g \mid b^{6}=c^{6}=d^{6}=e^{6}=f^{6}=g^{6}=[d,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 436176, 2085669, 66, 2255138, 2773683, 996232, 833225, 146, 5202604, 2083397, 1114260, 5801333, 3262914, 1593571, 543860, 265647, 226, 3393942, 3348091, 1536476, 558057, 256132, 1302919, 179732, 1696065, 29998, 282731, 306, 808712, 404373, 1086730, 67439, 181176, 505449, 4970182, 2400875, 828408, 400201, 386, 2965271, 1297332, 494257, 216278, 12366443, 6183240, 2737837, 1030586, 456363, 466, 10513164, 5256601, 876147]); a,b,c,d,e,f,g := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2"]);
 
Copy content gap:G := PcGroupCode(265012774723887707968659022886307501281503241141171732758474441328640283075530709716255790517896500729124998304354165593188719019170647601565513676905171588940872058064879042696444814813824644000254577165440779788749663525858333860713667850996607584283979222759437844686521780726083708245,93312); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(265012774723887707968659022886307501281503241141171732758474441328640283075530709716255790517896500729124998304354165593188719019170647601565513676905171588940872058064879042696444814813824644000254577165440779788749663525858333860713667850996607584283979222759437844686521780726083708245,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(265012774723887707968659022886307501281503241141171732758474441328640283075530709716255790517896500729124998304354165593188719019170647601565513676905171588940872058064879042696444814813824644000254577165440779788749663525858333860713667850996607584283979222759437844686521780726083708245,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12;
 
Permutation group:Degree $28$ $\langle(1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23), (1,3)(2,5,4,7,6,8)(9,11,15)(10,13,16)(12,17,14)(18,20,23)(19,21,24,26,25,22), (1,3)(2,5,4,7,6,8)(9,11,16)(10,13,14)(12,17,15)(18,20,22,19,21,23)(24,26,25)(27,28) >;
 
Copy content gap:G := Group( (1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23), (1,3)(2,5,4,7,6,8)(9,11,15)(10,13,16)(12,17,14)(18,20,23)(19,21,24,26,25,22), (1,3)(2,5,4,7,6,8)(9,11,16)(10,13,14)(12,17,15)(18,20,22,19,21,23)(24,26,25)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,6)(3,5,8,7)(9,10,12)(11,14,17,16,13,15)(18,19)(20,22,25,24,21,23)', '(1,3)(2,5,4,7,6,8)(9,11,15)(10,13,16)(12,17,14)(18,20,23)(19,21,24,26,25,22)', '(1,3)(2,5,4,7,6,8)(9,11,16)(10,13,14)(12,17,15)(18,20,22,19,21,23)(24,26,25)(27,28)'])
 
Transitive group: 36T19529 more information
Direct product: $C_2$ $\, \times\, $ $(C_6^4.S_3^2)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_6^5$ . $D_6$ (5) $C_6^4$ . $(S_3\times D_6)$ $(C_6^4:C_6)$ . $D_6$ $C_6^4$ . $(C_6:D_6)$ all 92

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 132 normal subgroups (87 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_6$ $G/Z \simeq$ $C_6^4:D_6$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $(C_2\times C_6^3).C_3^3$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3\times C_6^2$ $G/\Phi \simeq$ $S_3\times C_6:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_6^5$ $G/\operatorname{Fit} \simeq$ $D_6$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2\times C_6^4.S_3^2$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2\times C_6^2$ $G/\operatorname{soc} \simeq$ $C_6^2.S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^5:C_3$

Subgroup diagram and profile

Series

Derived series $C_2\times C_6^4.S_3^2$ $\rhd$ $(C_2\times C_6^3).C_3^3$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2\times C_6^4.S_3^2$ $\rhd$ $C_6^4.S_3^2$ $\rhd$ $(C_3^3\times C_6^2).S_4$ $\rhd$ $(C_2\times C_6^3).C_3^3$ $\rhd$ $C_3\times C_2^4:\He_3.C_3$ $\rhd$ $C_3\times C_6^2:A_4$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_2^2\times C_6^2$ $\rhd$ $C_2^3\times C_6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2\times C_6^4.S_3^2$ $\rhd$ $(C_2\times C_6^3).C_3^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_6$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 7 larger groups in the database.

This group is a maximal quotient of 5 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $924 \times 924$ character table is not available for this group.

Rational character table

The $538 \times 538$ rational character table is not available for this group.