Properties

Label 832.236.8.a1.a1
Order $ 2^{3} \cdot 13 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{52}$
Order: \(104\)\(\medspace = 2^{3} \cdot 13 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Generators: $b^{4}, c^{2}, b^{8}, c^{13}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{52}.C_8$
Order: \(832\)\(\medspace = 2^{6} \cdot 13 \)
Exponent: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{13}.(C_4^2\times C_{12}).C_2$
$\operatorname{Aut}(H)$ $D_4\times C_{12}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(208\)\(\medspace = 2^{4} \cdot 13 \)
$W$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{52}$
Normalizer:$D_{52}.C_8$
Minimal over-subgroups:$D_{52}:C_2$$C_{13}\times \OD_{16}$$C_{26}:C_8$
Maximal under-subgroups:$C_2\times C_{26}$$C_{52}$$C_{52}$$C_2\times C_4$

Other information

Möbius function$0$
Projective image$D_{26}:C_4$