Properties

Label 832.236.32.b1.a1
Order $ 2 \cdot 13 $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{26}$
Order: \(26\)\(\medspace = 2 \cdot 13 \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(26\)\(\medspace = 2 \cdot 13 \)
Generators: $c^{13}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,13$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{52}.C_8$
Order: \(832\)\(\medspace = 2^{6} \cdot 13 \)
Exponent: \(208\)\(\medspace = 2^{4} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{13}.(C_4^2\times C_{12}).C_2$
$\operatorname{Aut}(H)$ $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(208\)\(\medspace = 2^{4} \cdot 13 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{52}$
Normalizer:$C_{26}:C_{16}$
Normal closure:$C_2\times C_{26}$
Core:$C_{13}$
Minimal over-subgroups:$C_2\times C_{26}$
Maximal under-subgroups:$C_{13}$$C_2$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{52}.C_8$