Properties

Label 82944.gr.16.A
Order $ 2^{6} \cdot 3^{4} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:D_6^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(10,12)(16,17), (1,8,9)(2,3,5)(4,6,7), (10,12)(11,15)(13,14)(16,17), (2,6,9) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_6^2:C_2^2.S_4^2$
Order: \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^9.A_4\wr C_3$, of order \(995328\)\(\medspace = 2^{12} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $(A_4\times \He_3).C_2^6.C_2$
$\card{W}$\(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:D_6^2$
Normal closure:$C_6^2:C_2^2.S_4^2$
Core:$C_6^2:C_2^2$

Other information

Number of subgroups in this autjugacy class$48$
Number of conjugacy classes in this autjugacy class$3$
Möbius function not computed
Projective image not computed