Properties

Label 816293376.boe.559872._.A
Order $ 2 \cdot 3^{6} $
Index $ 2^{8} \cdot 3^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^5:S_3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Index: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,12,11)(13,14,15)(22,24,23)(25,27,26)(28,30,29)(31,33,32), (1,2,3)(4,5,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^{12}.C_2^6.C_{12}.C_2$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^6.C_2^5:S_4$
Order: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_3^6.C_2^7:S_4$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(13060694016\)\(\medspace = 2^{13} \cdot 3^{13} \)
$\operatorname{Aut}(H)$ $\AGL(6,3)$, of order \(61330486826476707840\)\(\medspace = 2^{13} \cdot 3^{21} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed