Properties

Label 81000.t.324.a1
Order $ 2 \cdot 5^{3} $
Index $ 2^{2} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_2$
Order: \(250\)\(\medspace = 2 \cdot 5^{3} \)
Index: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{6}, d^{3}e^{3}, e^{3}, c^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^3:D_6$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^3.S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Outer Automorphisms: $C_3$, of order \(3\)
Derived length: $3$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ $\AGL(3,5)$, of order \(186000000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{6} \cdot 31 \)
$W$$C_5^3:(C_4\times S_3)$, of order \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_{15}\wr S_3:C_4$
Minimal over-subgroups:$C_5^3:C_6$$C_5^3:C_6$$C_5^3:C_6$$C_5^3:C_6$$C_5:D_5^2$$C_5^3:C_4$$C_5^3:C_4$
Maximal under-subgroups:$C_5^3$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}\wr S_3:C_4$