Properties

Label 81000.t.18.k1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{3} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^2:C_{45}:C_4$
Order: \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Generators: $ab^{3}c^{2}e^{2}, d^{3}e^{3}, b^{4}c^{5}d^{8}e^{8}, c^{3}, b^{6}d^{6}e^{3}, e^{3}, c^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{15}\wr S_3:C_4$
Order: \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.(C_{12}\times S_3^2)\times F_5$
$\operatorname{Aut}(H)$ $C_5^3.C_9.C_6.C_2.C_2^3$
$W$$C_5^2:C_{45}:C_{12}$, of order \(13500\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^2:C_{45}:C_{12}$
Normal closure:$C_{15}\wr C_3:C_4$
Core:$C_5^3:C_6$
Minimal over-subgroups:$C_5^2:C_{45}:C_{12}$
Maximal under-subgroups:$C_5^3:C_{18}$$(C_5\times C_{15}):F_5$$C_5^2:C_9:C_4$$C_{45}:C_4$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_{15}\wr S_3:C_4$