Subgroup ($H$) information
Description: | $C_5^3:C_3^2:C_4$ |
Order: | \(4500\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{3} \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$ab^{3}c^{2}e^{2}, d^{3}e^{3}, b^{4}d^{3}e^{3}, c^{10}, b^{6}d^{6}e^{3}, e^{3}, c^{3}$
|
Derived length: | $3$ |
The subgroup is nonabelian, monomial (hence solvable), and an A-group.
Ambient group ($G$) information
Description: | $C_{15}\wr S_3:C_4$ |
Order: | \(81000\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 5^{3} \) |
Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{15}^2.(C_{12}\times S_3^2)\times F_5$ |
$\operatorname{Aut}(H)$ | $(C_5^2\times C_{15}).C_6^2.C_2^4$ |
$W$ | $C_{15}^2:(S_3\times F_5)$, of order \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{15}\wr S_3:C_4$ |