Properties

Label 800.818.2.c1
Order $ 2^{4} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:C_{20}$
Order: \(400\)\(\medspace = 2^{4} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $ac^{5}, c^{4}, b^{4}, b^{10}, b^{5}, c^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a direct factor, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{10}^2.D_4$
Order: \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5:(C_4^2\times C_2^6.C_2^3)$
$\operatorname{Aut}(H)$ $C_2^{16}.\PSL(2,7)$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\operatorname{res}(S)$$C_2^{16}.\PSL(2,7)$, of order \(2560\)\(\medspace = 2^{9} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_{10}^2.D_4$
Complements:$C_2$
Minimal over-subgroups:$C_{10}^2.D_4$
Maximal under-subgroups:$C_{10}\times C_{20}$$C_{10}:C_{20}$$C_{20}:C_4$$C_4:C_{20}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-1$
Projective image$C_2\times D_{10}$