Properties

Label 798600.i.798600.a1
Order $ 1 $
Index $ 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(798600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the Frattini subgroup (hence characteristic and normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational. Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(S_3\times C_{10}^2)$
Order: \(798600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_{11}^3:(S_3\times C_{10}^2)$
Order: \(798600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Automorphism Group: Group of order \(63888000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
Outer Automorphisms: $C_2^2\times C_{10}\times F_5$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(63888000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$C_{11}^3:(S_3\times C_{10}^2)$
Normalizer:$C_{11}^3:(S_3\times C_{10}^2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed