Properties

Label 798600.i
Order \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent \( 2 \cdot 3 \cdot 5 \cdot 11 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 5^{2} \)
$\card{Z(G)}$ \( 2 \cdot 5 \)
$\card{\Aut(G)}$ \( 2^{7} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{5} \cdot 5^{2} \)
Perm deg. $40$
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (34,35,36,38,37), (1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23)(11,27,21,31,26,30,22,32,28,29,33)(34,36,37,35,38), (2,7,9,17,5,16,19,6,18,4)(3,11,13,28,15,31,8,21,10,26)(12,30,14,29,24,27,20,22,23,32)(25,33)(34,36,37,35,38)(39,40), (34,35,36,38,37)(39,40), (1,3,11)(2,8,22,7,12,26,9,23,33,17,24,31,5,13,21,16,14,30,19,20,32,6,10,27,18,25,28,4,15,29)(34,35,36,38,37)(39,40), (1,2,6,19,5,18,17,4,7,9,16)(3,12,25,10,14,15,13,8,23,24,20)(11,28,30,21,33,32,26,27,29,22,31)(34,37,38,36,35), (1,4,16,18,17,7,2,9,19,6)(3,13,8,24,25,20,14,10,12,23)(21,26,28,30,33,29,32,31,22,27), (3,14,23,12,15,24,25,13,20,10,8)(11,29,32,30,31,27,33,28,22,26,21)(34,38,35,37,36)(39,40), (1,5,6,19,7)(2,9,18,4,17)(8,25,20,13,23)(10,14,24,12,15)(11,22,31,33,27)(21,30,29,32,28)(34,37,38,36,35) >;
 
Copy content gap:G := Group( (34,35,36,38,37), (1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23)(11,27,21,31,26,30,22,32,28,29,33)(34,36,37,35,38), (2,7,9,17,5,16,19,6,18,4)(3,11,13,28,15,31,8,21,10,26)(12,30,14,29,24,27,20,22,23,32)(25,33)(34,36,37,35,38)(39,40), (34,35,36,38,37)(39,40), (1,3,11)(2,8,22,7,12,26,9,23,33,17,24,31,5,13,21,16,14,30,19,20,32,6,10,27,18,25,28,4,15,29)(34,35,36,38,37)(39,40), (1,2,6,19,5,18,17,4,7,9,16)(3,12,25,10,14,15,13,8,23,24,20)(11,28,30,21,33,32,26,27,29,22,31)(34,37,38,36,35), (1,4,16,18,17,7,2,9,19,6)(3,13,8,24,25,20,14,10,12,23)(21,26,28,30,33,29,32,31,22,27), (3,14,23,12,15,24,25,13,20,10,8)(11,29,32,30,31,27,33,28,22,26,21)(34,38,35,37,36)(39,40), (1,5,6,19,7)(2,9,18,4,17)(8,25,20,13,23)(10,14,24,12,15)(11,22,31,33,27)(21,30,29,32,28)(34,37,38,36,35) );
 
Copy content sage:G = PermutationGroup(['(34,35,36,38,37)', '(1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23)(11,27,21,31,26,30,22,32,28,29,33)(34,36,37,35,38)', '(2,7,9,17,5,16,19,6,18,4)(3,11,13,28,15,31,8,21,10,26)(12,30,14,29,24,27,20,22,23,32)(25,33)(34,36,37,35,38)(39,40)', '(34,35,36,38,37)(39,40)', '(1,3,11)(2,8,22,7,12,26,9,23,33,17,24,31,5,13,21,16,14,30,19,20,32,6,10,27,18,25,28,4,15,29)(34,35,36,38,37)(39,40)', '(1,2,6,19,5,18,17,4,7,9,16)(3,12,25,10,14,15,13,8,23,24,20)(11,28,30,21,33,32,26,27,29,22,31)(34,37,38,36,35)', '(1,4,16,18,17,7,2,9,19,6)(3,13,8,24,25,20,14,10,12,23)(21,26,28,30,33,29,32,31,22,27)', '(3,14,23,12,15,24,25,13,20,10,8)(11,29,32,30,31,27,33,28,22,26,21)(34,38,35,37,36)(39,40)', '(1,5,6,19,7)(2,9,18,4,17)(8,25,20,13,23)(10,14,24,12,15)(11,22,31,33,27)(21,30,29,32,28)(34,37,38,36,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(31604515881349254106337098671025999532963447253957555619836240604850642716357777911207517603740219760224589150850931104697896923625616727872397149815838462421604537731263758021030199039,798600)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7;
 

Group information

Description:$C_{11}^3:(S_3\times C_{10}^2)$
Order: \(798600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(63888000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 3, $C_3$, $C_5$ x 2, $C_{11}$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 5 6 10 11 15 22 30 33 55 66 110 165 330
Elements 1 3455 242 26624 5566 413120 1330 54208 16510 181984 2420 5320 2420 66040 9680 9680 798600
Conjugacy classes   1 7 1 24 3 168 29 24 55 72 1 116 1 220 4 4 730
Divisions 1 7 1 6 3 42 29 6 55 18 1 29 1 55 1 1 256
Autjugacy classes 1 4 1 5 2 20 7 5 11 10 1 7 1 11 1 1 88

Minimal presentations

Permutation degree:$40$
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 30 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e \mid a^{10}=b^{6}=c^{11}=d^{11}=e^{110}=[c,d]=[c,e]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, 2, 5, 2, 3, 11, 11, 2, 5, 11, 18, 15806072, 4963826, 74, 10645923, 7888692, 13240804, 5413, 685822, 984721, 23522405, 71294, 1179707, 588092, 5155926, 18523905, 519774, 488598, 186, 11784967, 13590736, 1188025, 1116754, 430, 427688, 11761217, 37448, 2959046]); a,b,c,d,e := Explode([G.1, G.3, G.5, G.6, G.7]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "e", "e2", "e10"]);
 
Copy content gap:G := PcGroupCode(31604515881349254106337098671025999532963447253957555619836240604850642716357777911207517603740219760224589150850931104697896923625616727872397149815838462421604537731263758021030199039,798600); a := G.1; b := G.3; c := G.5; d := G.6; e := G.7;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(31604515881349254106337098671025999532963447253957555619836240604850642716357777911207517603740219760224589150850931104697896923625616727872397149815838462421604537731263758021030199039,798600)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(31604515881349254106337098671025999532963447253957555619836240604850642716357777911207517603740219760224589150850931104697896923625616727872397149815838462421604537731263758021030199039,798600)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.7;
 
Permutation group:Degree $40$ $\langle(34,35,36,38,37), (1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 40 | (34,35,36,38,37), (1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23)(11,27,21,31,26,30,22,32,28,29,33)(34,36,37,35,38), (2,7,9,17,5,16,19,6,18,4)(3,11,13,28,15,31,8,21,10,26)(12,30,14,29,24,27,20,22,23,32)(25,33)(34,36,37,35,38)(39,40), (34,35,36,38,37)(39,40), (1,3,11)(2,8,22,7,12,26,9,23,33,17,24,31,5,13,21,16,14,30,19,20,32,6,10,27,18,25,28,4,15,29)(34,35,36,38,37)(39,40), (1,2,6,19,5,18,17,4,7,9,16)(3,12,25,10,14,15,13,8,23,24,20)(11,28,30,21,33,32,26,27,29,22,31)(34,37,38,36,35), (1,4,16,18,17,7,2,9,19,6)(3,13,8,24,25,20,14,10,12,23)(21,26,28,30,33,29,32,31,22,27), (3,14,23,12,15,24,25,13,20,10,8)(11,29,32,30,31,27,33,28,22,26,21)(34,38,35,37,36)(39,40), (1,5,6,19,7)(2,9,18,4,17)(8,25,20,13,23)(10,14,24,12,15)(11,22,31,33,27)(21,30,29,32,28)(34,37,38,36,35) >;
 
Copy content gap:G := Group( (34,35,36,38,37), (1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23)(11,27,21,31,26,30,22,32,28,29,33)(34,36,37,35,38), (2,7,9,17,5,16,19,6,18,4)(3,11,13,28,15,31,8,21,10,26)(12,30,14,29,24,27,20,22,23,32)(25,33)(34,36,37,35,38)(39,40), (34,35,36,38,37)(39,40), (1,3,11)(2,8,22,7,12,26,9,23,33,17,24,31,5,13,21,16,14,30,19,20,32,6,10,27,18,25,28,4,15,29)(34,35,36,38,37)(39,40), (1,2,6,19,5,18,17,4,7,9,16)(3,12,25,10,14,15,13,8,23,24,20)(11,28,30,21,33,32,26,27,29,22,31)(34,37,38,36,35), (1,4,16,18,17,7,2,9,19,6)(3,13,8,24,25,20,14,10,12,23)(21,26,28,30,33,29,32,31,22,27), (3,14,23,12,15,24,25,13,20,10,8)(11,29,32,30,31,27,33,28,22,26,21)(34,38,35,37,36)(39,40), (1,5,6,19,7)(2,9,18,4,17)(8,25,20,13,23)(10,14,24,12,15)(11,22,31,33,27)(21,30,29,32,28)(34,37,38,36,35) );
 
Copy content sage:G = PermutationGroup(['(34,35,36,38,37)', '(1,2,6,19,5,18,17,4,7,9,16)(3,10,13,24,12,14,8,20,25,15,23)(11,27,21,31,26,30,22,32,28,29,33)(34,36,37,35,38)', '(2,7,9,17,5,16,19,6,18,4)(3,11,13,28,15,31,8,21,10,26)(12,30,14,29,24,27,20,22,23,32)(25,33)(34,36,37,35,38)(39,40)', '(34,35,36,38,37)(39,40)', '(1,3,11)(2,8,22,7,12,26,9,23,33,17,24,31,5,13,21,16,14,30,19,20,32,6,10,27,18,25,28,4,15,29)(34,35,36,38,37)(39,40)', '(1,2,6,19,5,18,17,4,7,9,16)(3,12,25,10,14,15,13,8,23,24,20)(11,28,30,21,33,32,26,27,29,22,31)(34,37,38,36,35)', '(1,4,16,18,17,7,2,9,19,6)(3,13,8,24,25,20,14,10,12,23)(21,26,28,30,33,29,32,31,22,27)', '(3,14,23,12,15,24,25,13,20,10,8)(11,29,32,30,31,27,33,28,22,26,21)(34,38,35,37,36)(39,40)', '(1,5,6,19,7)(2,9,18,4,17)(8,25,20,13,23)(10,14,24,12,15)(11,22,31,33,27)(21,30,29,32,28)(34,37,38,36,35)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 5 & 7 & 4 & 0 \\ 10 & 10 & 10 & 0 \\ 8 & 10 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 5 & 3 & 8 & 0 \\ 0 & 0 & 1 & 6 \\ 5 & 1 & 4 & 8 \\ 8 & 7 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 2 & 6 & 9 & 4 \\ 4 & 8 & 0 & 0 \\ 5 & 10 & 4 & 10 \\ 5 & 4 & 9 & 4 \end{array}\right), \left(\begin{array}{rrrr} 8 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 8 & 0 \\ 0 & 0 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 5 & 9 & 4 & 0 \\ 2 & 2 & 10 & 0 \\ 2 & 2 & 6 & 4 \end{array}\right), \left(\begin{array}{rrrr} 0 & 10 & 3 & 5 \\ 10 & 8 & 3 & 3 \\ 6 & 7 & 4 & 1 \\ 0 & 6 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 9 & 8 \\ 10 & 6 & 4 & 9 \\ 6 & 4 & 1 & 9 \\ 0 & 6 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 7 & 5 & 10 & 0 \\ 6 & 6 & 5 & 0 \\ 3 & 6 & 4 & 1 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{11})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(11) | [[3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3], [2, 0, 0, 0, 5, 7, 4, 0, 10, 10, 10, 0, 8, 10, 6, 4], [5, 3, 8, 0, 0, 0, 1, 6, 5, 1, 4, 8, 8, 7, 5, 2], [2, 6, 9, 4, 4, 8, 0, 0, 5, 10, 4, 10, 5, 4, 9, 4], [8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8, 0, 0, 0, 0, 8], [4, 0, 0, 0, 5, 9, 4, 0, 2, 2, 10, 0, 2, 2, 6, 4], [0, 10, 3, 5, 10, 8, 3, 3, 6, 7, 4, 1, 0, 6, 1, 1], [3, 2, 9, 8, 10, 6, 4, 9, 6, 4, 1, 9, 0, 6, 1, 4], [9, 0, 0, 0, 7, 5, 10, 0, 6, 6, 5, 0, 3, 6, 4, 1]] >;
 
Copy content gap:G := Group([[[ Z(11)^8, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^8, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^8, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^8 ]], [[ Z(11), 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^7, Z(11)^2, 0*Z(11) ], [ Z(11)^5, Z(11)^5, Z(11)^5, 0*Z(11) ], [ Z(11)^3, Z(11)^5, Z(11)^9, Z(11)^2 ]], [[ Z(11)^4, Z(11)^8, Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^0, Z(11)^9 ], [ Z(11)^4, Z(11)^0, Z(11)^2, Z(11)^3 ], [ Z(11)^3, Z(11)^7, Z(11)^4, Z(11) ]], [[ Z(11), Z(11)^9, Z(11)^6, Z(11)^2 ], [ Z(11)^2, Z(11)^3, 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^5, Z(11)^2, Z(11)^5 ], [ Z(11)^4, Z(11)^2, Z(11)^6, Z(11)^2 ]], [[ Z(11)^3, 0*Z(11), 0*Z(11), 0*Z(11) ], [ 0*Z(11), Z(11)^3, 0*Z(11), 0*Z(11) ], [ 0*Z(11), 0*Z(11), Z(11)^3, 0*Z(11) ], [ 0*Z(11), 0*Z(11), 0*Z(11), Z(11)^3 ]], [[ Z(11)^2, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^4, Z(11)^6, Z(11)^2, 0*Z(11) ], [ Z(11), Z(11), Z(11)^5, 0*Z(11) ], [ Z(11), Z(11), Z(11)^9, Z(11)^2 ]], [[ 0*Z(11), Z(11)^5, Z(11)^8, Z(11)^4 ], [ Z(11)^5, Z(11)^3, Z(11)^8, Z(11)^8 ], [ Z(11)^9, Z(11)^7, Z(11)^2, Z(11)^0 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^0 ]], [[ Z(11)^8, Z(11), Z(11)^6, Z(11)^3 ], [ Z(11)^5, Z(11)^9, Z(11)^2, Z(11)^6 ], [ Z(11)^9, Z(11)^2, Z(11)^0, Z(11)^6 ], [ 0*Z(11), Z(11)^9, Z(11)^0, Z(11)^2 ]], [[ Z(11)^6, 0*Z(11), 0*Z(11), 0*Z(11) ], [ Z(11)^7, Z(11)^4, Z(11)^5, 0*Z(11) ], [ Z(11)^9, Z(11)^9, Z(11)^4, 0*Z(11) ], [ Z(11)^8, Z(11)^9, Z(11)^2, Z(11)^0 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(11), 4, 4) G = MatrixGroup([MS([[3, 0, 0, 0], [0, 3, 0, 0], [0, 0, 3, 0], [0, 0, 0, 3]]), MS([[2, 0, 0, 0], [5, 7, 4, 0], [10, 10, 10, 0], [8, 10, 6, 4]]), MS([[5, 3, 8, 0], [0, 0, 1, 6], [5, 1, 4, 8], [8, 7, 5, 2]]), MS([[2, 6, 9, 4], [4, 8, 0, 0], [5, 10, 4, 10], [5, 4, 9, 4]]), MS([[8, 0, 0, 0], [0, 8, 0, 0], [0, 0, 8, 0], [0, 0, 0, 8]]), MS([[4, 0, 0, 0], [5, 9, 4, 0], [2, 2, 10, 0], [2, 2, 6, 4]]), MS([[0, 10, 3, 5], [10, 8, 3, 3], [6, 7, 4, 1], [0, 6, 1, 1]]), MS([[3, 2, 9, 8], [10, 6, 4, 9], [6, 4, 1, 9], [0, 6, 1, 4]]), MS([[9, 0, 0, 0], [7, 5, 10, 0], [6, 6, 5, 0], [3, 6, 4, 1]])])
 
Direct product: $C_2$ $\, \times\, $ $C_5$ $\, \times\, $ $(C_{11}^3:(S_3\times C_{10}))$
Semidirect product: $C_{11}^3$ $\,\rtimes\,$ $(S_3\times C_{10}^2)$ $(C_5\times C_{11}^3:C_{15})$ $\,\rtimes\,$ $C_2^3$ $(C_{11}^3:C_5^2)$ $\,\rtimes\,$ $(C_2\times D_6)$ $(C_{11}^3:(C_2\times D_6))$ $\,\rtimes\,$ $C_5^2$ all 5
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_{11}\wr S_3)$ . $C_{10}^2$ $(C_{11}^3:C_{10}^2)$ . $S_3$ $(C_{11}^3:C_6)$ . $C_{10}^2$ $(C_{11}^2:D_{33})$ . $C_{10}^2$ all 69

Elements of the group are displayed as matrices in $\GL_{4}(\F_{11})$.

Homology

Abelianization: $C_{2} \times C_{10}^{2} \simeq C_{2}^{3} \times C_{5}^{2}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{10}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 190 normal subgroups (45 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_{10}$ $G/Z \simeq$ $C_{11}^3:(S_3\times C_{10})$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{11}\wr C_3$ $G/G' \simeq$ $C_2\times C_{10}^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{11}^3:(S_3\times C_{10}^2)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{11}^2\times C_{110}$ $G/\operatorname{Fit} \simeq$ $S_3\times C_{10}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{11}^3:(S_3\times C_{10}^2)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{11}^2\times C_{110}$ $G/\operatorname{soc} \simeq$ $S_3\times C_{10}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}^3$

Subgroup diagram and profile

Series

Derived series $C_{11}^3:(S_3\times C_{10}^2)$ $\rhd$ $C_{11}\wr C_3$ $\rhd$ $C_{11}^2$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{11}^3:(S_3\times C_{10}^2)$ $\rhd$ $C_{10}\times C_{11}^3:C_{30}$ $\rhd$ $C_5\times C_{11}^3:C_{30}$ $\rhd$ $C_5\times C_{11}^3:C_{15}$ $\rhd$ $C_{11}^2:C_{165}$ $\rhd$ $C_{11}\wr C_3$ $\rhd$ $C_{11}^3$ $\rhd$ $C_{11}^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{11}^3:(S_3\times C_{10}^2)$ $\rhd$ $C_{11}\wr C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_{10}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $730 \times 730$ character table is not available for this group.

Rational character table

The $256 \times 256$ rational character table is not available for this group.