Properties

Label 798600.i.600.a1
Order $ 11^{3} $
Index $ 2^{3} \cdot 3 \cdot 5^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^3$
Order: \(1331\)\(\medspace = 11^{3} \)
Index: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(11\)
Generators: $\left(\begin{array}{rrrr} 8 & 0 & 7 & 4 \\ 3 & 0 & 1 & 7 \\ 4 & 4 & 2 & 0 \\ 0 & 4 & 8 & 5 \end{array}\right), \left(\begin{array}{rrrr} 7 & 9 & 2 & 3 \\ 8 & 0 & 6 & 2 \\ 10 & 1 & 2 & 2 \\ 5 & 10 & 3 & 6 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 6 & 4 & 0 \\ 2 & 2 & 7 & 0 \\ 2 & 2 & 6 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor has not been computed.

Ambient group ($G$) information

Description: $C_{11}^3:(S_3\times C_{10}^2)$
Order: \(798600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3\times C_{10}^2$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $\GL(2,5)\times S_4\times S_3$
Outer Automorphisms: $S_4\times \GL(2,5)$, of order \(11520\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(63888000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $\GL(3,11)$, of order \(2124276000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \cdot 7 \cdot 11^{3} \cdot 19 \)
$\card{W}$\(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_{11}^2\times C_{110}$
Normalizer:$C_{11}^3:(S_3\times C_{10}^2)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed