Properties

Label 79860.j.121.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11 $
Index $ 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{66}:C_{10}$
Order: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(121\)\(\medspace = 11^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, a^{2}c^{4}d^{9}, b^{44}c^{4}d, b^{33}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{11}^3:(S_3\times C_{10})$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{15}.C_5.C_2^4$
$\operatorname{Aut}(H)$ $D_6\times F_{11}$, of order \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
$W$$C_{33}:C_{10}$, of order \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{66}:C_{10}$
Normal closure:$C_{11}^3:(S_3\times C_{10})$
Core:$C_{22}$
Minimal over-subgroups:$C_{11}^3:(S_3\times C_{10})$
Maximal under-subgroups:$C_{11}:C_{30}$$C_{33}:C_{10}$$C_{22}:C_{10}$$S_3\times C_{22}$$S_3\times C_{10}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_{11}^3:(C_5\times S_3)$