Properties

Label 79200.f.720.b1.a1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2^{4} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_{10}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 6 & 3 & 6 & 1 \\ 8 & 8 & 3 & 6 \\ 6 & 4 & 5 & 8 \\ 3 & 6 & 3 & 7 \end{array}\right), \left(\begin{array}{rrrr} 7 & 0 & 7 & 3 \\ 2 & 3 & 9 & 7 \\ 9 & 4 & 4 & 0 \\ 8 & 9 & 9 & 0 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Ambient group ($G$) information

Description: $C_5\times \SL(2,11):D_6$
Order: \(79200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$C_{11}:C_5$, of order \(55\)\(\medspace = 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{15}:Q_8$
Normalizer:$C_{660}.C_{10}$
Normal closure:$\SL(2,11)$
Core:$C_2$
Minimal over-subgroups:$\SL(2,11)$$C_{110}:C_5$$C_{11}:C_{30}$$C_{11}:C_{20}$$C_{11}:C_{20}$$C_{11}:C_{20}$
Maximal under-subgroups:$C_{11}:C_5$$C_{22}$$C_{10}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$-6$
Projective image not computed