Properties

Label 79200.f.12.b1.a1
Order $ 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{660}.C_{10}$
Order: \(6600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \cdot 11 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 6 & 10 & 3 \\ 9 & 2 & 9 & 4 \\ 9 & 8 & 9 & 9 \\ 3 & 8 & 8 & 10 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 7 & 0 \\ 7 & 0 & 0 & 4 \\ 3 & 0 & 0 & 1 \\ 0 & 8 & 7 & 0 \end{array}\right), \left(\begin{array}{rrrr} 3 & 1 & 10 & 7 \\ 7 & 10 & 6 & 0 \\ 6 & 9 & 3 & 10 \\ 6 & 1 & 3 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 9 & 8 & 10 \\ 3 & 8 & 0 & 8 \\ 6 & 5 & 3 & 2 \\ 6 & 6 & 8 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 2 & 8 & 1 & 4 \\ 10 & 6 & 0 & 1 \\ 9 & 2 & 4 & 3 \\ 9 & 9 & 1 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_5\times \SL(2,11):D_6$
Order: \(79200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 11 \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_4\times S_3\times D_4).\PSL(2,11).C_2$
$\operatorname{Aut}(H)$ $C_{330}.C_{10}.C_2^5$
$W$$C_{66}:C_{10}$, of order \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{660}.C_{10}$
Normal closure:$C_5\times \SL(2,11):D_6$
Core:$C_{15}:Q_8$
Minimal over-subgroups:$C_5\times \SL(2,11):D_6$
Maximal under-subgroups:$C_{55}:C_{60}$$C_{165}:C_{20}$$C_{165}:C_{20}$$C_{220}.C_{10}$$C_{165}:Q_8$$C_{132}.C_{10}$$C_{132}.C_{10}$$C_{132}.C_{10}$$C_{132}.C_{10}$$C_{132}.C_{10}$$C_{60}.C_{10}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$-1$
Projective image not computed