Properties

Label 792.12.1.a1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 11 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$Q_8:C_{99}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Index: $1$
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 181 & 0 \\ 0 & 181 \end{array}\right), \left(\begin{array}{rr} 164 & 101 \\ 45 & 35 \end{array}\right), \left(\begin{array}{rr} 198 & 0 \\ 0 & 198 \end{array}\right), \left(\begin{array}{rr} 131 & 40 \\ 143 & 65 \end{array}\right), \left(\begin{array}{rr} 190 & 50 \\ 70 & 9 \end{array}\right), \left(\begin{array}{rr} 27 & 0 \\ 0 & 27 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup.

Ambient group ($G$) information

Description: $Q_8:C_{99}$
Order: \(792\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 11 \)
Exponent: \(396\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_4\times C_{30}$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_4\times C_{30}$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{66}$
Normalizer:$Q_8:C_{99}$
Complements:$C_1$
Maximal under-subgroups:$Q_8\times C_{33}$$C_{198}$$Q_8:C_9$

Other information

Möbius function$1$
Projective image$A_4$