Properties

Label 78804.b.4.a1.a1
Order $ 3^{2} \cdot 11 \cdot 199 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{199}:C_{99}$
Order: \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(19701\)\(\medspace = 3^{2} \cdot 11 \cdot 199 \)
Generators: $a^{110}, a^{18}, b^{2}, a^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{398}:C_{198}$
Order: \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_{199}$, of order \(236412\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \)
$\operatorname{Aut}(H)$ $C_3\times F_{199}$, of order \(118206\)\(\medspace = 2 \cdot 3^{3} \cdot 11 \cdot 199 \)
$W$$C_{199}:C_{66}$, of order \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{398}:C_{198}$
Complements:$C_2^2$
Minimal over-subgroups:$C_{199}:C_{198}$$C_{199}:C_{198}$$C_{199}:C_{198}$
Maximal under-subgroups:$C_{199}:C_{33}$$C_{199}:C_9$$C_{99}$

Other information

Möbius function$2$
Projective image$C_{398}:C_{66}$