Properties

Label 78804.b.12.a1.a1
Order $ 3 \cdot 11 \cdot 199 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{199}:C_{33}$
Order: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6567\)\(\medspace = 3 \cdot 11 \cdot 199 \)
Generators: $a^{132}, a^{18}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 11$.

Ambient group ($G$) information

Description: $C_{398}:C_{198}$
Order: \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
Exponent: \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6\times F_{199}$, of order \(236412\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \)
$\operatorname{Aut}(H)$ $C_2\times F_{199}$, of order \(78804\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 11 \cdot 199 \)
$W$$C_{199}:C_{66}$, of order \(13134\)\(\medspace = 2 \cdot 3 \cdot 11 \cdot 199 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{398}:C_{198}$
Minimal over-subgroups:$C_{199}:C_{99}$$C_{1194}:C_{11}$$C_{199}:C_{66}$$C_{199}:C_{66}$
Maximal under-subgroups:$C_{199}:C_{11}$$C_{597}$$C_{33}$

Other information

Möbius function$-2$
Projective image$C_{398}:C_{66}$