Properties

Label 78732.fx.18.C
Order $ 2 \cdot 3^{7} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(4374\)\(\medspace = 2 \cdot 3^{7} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: not computed
Generators: $\langle(1,7,9)(2,11,13)(3,16,15)(4,17,5)(6,8,18)(10,12,14)(19,25,24)(20,23,26) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^8.D_6$
Order: \(78732\)\(\medspace = 2^{2} \cdot 3^{9} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_3\times S_3$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5\times C_{11}^2:C_{40}$, of order \(8503056\)\(\medspace = 2^{4} \cdot 3^{12} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_3^6:D_6$, of order \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^8.D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed