Properties

Label 784.61.98.a1.a1
Order $ 2^{3} $
Index $ 2 \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(98\)\(\medspace = 2 \cdot 7^{2} \)
Exponent: \(2\)
Generators: $abc^{7}, b^{14}c^{7}, c^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_{14}.D_{28}$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7:D_7:C_3.C_2.C_6.C_2^4$
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2:C_4$
Normal closure:$C_{14}:D_{14}$
Core:$C_2^2$
Minimal over-subgroups:$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_2^2:C_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this conjugacy class$49$
Möbius function$-1$
Projective image$D_7^2$