Subgroup ($H$) information
| Description: | $C_2^3$ |
| Order: | \(8\)\(\medspace = 2^{3} \) |
| Index: | \(98\)\(\medspace = 2 \cdot 7^{2} \) |
| Exponent: | \(2\) |
| Generators: |
$abc^{7}, b^{14}c^{7}, c^{7}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
| Description: | $C_{14}.D_{28}$ |
| Order: | \(784\)\(\medspace = 2^{4} \cdot 7^{2} \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7:D_7:C_3.C_2.C_6.C_2^4$ |
| $\operatorname{Aut}(H)$ | $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $49$ |
| Möbius function | $-1$ |
| Projective image | $D_7^2$ |