Properties

Label 784.61.56.d1.b1
Order $ 2 \cdot 7 $
Index $ 2^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $c^{7}, b^{4}c^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{14}.D_{28}$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7:D_7:C_3.C_2.C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{14}^2$
Normalizer:$C_{14}:D_{14}$
Normal closure:$C_7\times C_{14}$
Core:$C_2$
Minimal over-subgroups:$C_7\times C_{14}$$D_{14}$$D_{14}$$C_2\times C_{14}$
Maximal under-subgroups:$C_7$$C_2$
Autjugate subgroups:784.61.56.d1.a1784.61.56.d1.c1784.61.56.d1.d1784.61.56.d1.e1784.61.56.d1.f1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_7:D_{28}$