Properties

Label 784.61.28.d1.b2
Order $ 2^{2} \cdot 7 $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $abc^{7}, b^{4}c^{10}, c^{7}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{14}.D_{28}$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7:D_7:C_3.C_2.C_6.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\operatorname{res}(S)$$C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_{14}$
Normal closure:$C_{14}:D_{14}$
Core:$C_2$
Minimal over-subgroups:$C_7:D_{14}$$C_2\times D_{14}$
Maximal under-subgroups:$C_{14}$$D_7$$D_7$$C_2^2$
Autjugate subgroups:784.61.28.d1.a1784.61.28.d1.a2784.61.28.d1.b1784.61.28.d1.c1784.61.28.d1.c2784.61.28.d1.d1784.61.28.d1.d2784.61.28.d1.e1784.61.28.d1.e2784.61.28.d1.f1784.61.28.d1.f2

Other information

Number of subgroups in this conjugacy class$14$
Möbius function$0$
Projective image$C_7:D_{28}$