Properties

Label 784.120.1.a1.a1
Order $ 2^{4} \cdot 7^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{28}:D_7$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Index: $1$
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a, c^{4}, c^{7}, c^{14}, b^{7}, b^{2}c^{14}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), and metabelian.

Ambient group ($G$) information

Description: $D_{28}:D_7$
Order: \(784\)\(\medspace = 2^{4} \cdot 7^{2} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^2.C_6^2.C_2^4$
$\operatorname{Aut}(H)$ $C_7^2.C_6^2.C_2^4$
$W$$D_7\times D_{14}$, of order \(392\)\(\medspace = 2^{3} \cdot 7^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_{28}:D_7$
Complements:$C_1$
Maximal under-subgroups:$C_7:D_{28}$$C_7:D_{28}$$C_{14}.D_{14}$$C_{14}.D_{14}$$C_7\times D_{28}$$C_{28}:D_7$$C_7^2:Q_8$$D_4:D_7$$D_{28}:C_2$

Other information

Möbius function$1$
Projective image$D_7\times D_{14}$