Subgroup ($H$) information
| Description: | $A_4\times C_{65}$ |
| Order: | \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
| Index: | $1$ |
| Exponent: | \(390\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 13 \) |
| Generators: |
$a, c^{2}, b^{5}c^{13}, b^{2}, c^{13}$
|
| Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $A_4\times C_{65}$ |
| Order: | \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
| Exponent: | \(390\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 13 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_1$ |
| Order: | $1$ |
| Exponent: | $1$ |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_4\times C_{12}\times S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $\operatorname{Aut}(H)$ | $C_4\times C_{12}\times S_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $W$ | $A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
| Centralizer: | $C_{65}$ | |||
| Normalizer: | $A_4\times C_{65}$ | |||
| Complements: | $C_1$ | |||
| Maximal under-subgroups: | $C_2\times C_{130}$ | $C_{195}$ | $A_4\times C_{13}$ | $C_5\times A_4$ |
Other information
| Möbius function | $1$ |
| Projective image | $A_4$ |