Properties

Label 77760.p.360.el1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_6$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,6,4)(2,9,7)(11,14)(12,13), (3,5,8), (1,9,6,7,4,2)(3,5), (1,4,6)(2,7,9), (1,2,4,7,6,9)(3,8)(11,12,14), (1,2,4,7,6,9)(3,5)(11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$A_4\times D_6$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_6^2:C_6$
Normal closure:$A_5\times C_3^3:S_4$
Core:$C_1$
Minimal over-subgroups:$S_3\times \GL(2,4)$$C_3\times C_6^2:C_6$$C_6\times S_3\times A_4$$A_4\times S_3^2$$A_4\times S_3^2$
Maximal under-subgroups:$C_3^2\times A_4$$C_6\times A_4$$C_6\times D_6$$S_3\times A_4$$S_3\times A_4$$S_3\times C_3^2$

Other information

Number of subgroups in this autjugacy class$90$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5\times S_3\wr S_3$