Subgroup ($H$) information
| Description: | $C_6^2:C_6$ |
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Index: | \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(1,6,4)(2,9,7)(11,14)(12,13), (3,5,8), (1,9,6,7,4,2)(3,5), (1,4,6)(2,7,9), (1,2,4,7,6,9)(3,8)(11,12,14), (1,2,4,7,6,9)(3,5)(11,13)(12,14)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $A_5\times S_3\wr S_3$ |
| Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) |
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \) |
| $\operatorname{Aut}(H)$ | $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $A_4\times D_6$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $90$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $A_5\times S_3\wr S_3$ |