Subgroup ($H$) information
| Description: | $C_6\times S_3\times A_4$ | 
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) | 
| Index: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | 
		
    $\langle(1,6,4)(2,9,7)(3,5)(11,14)(12,13), (1,2,4,7,6,9)(11,13)(12,14), (3,5,8), (1,2,4,7,6,9)(3,5,8)(11,12,14), (1,9,6,7,4,2)(3,5), (1,4,6)(2,7,9), (5,8)\rangle$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $A_5\times S_3\wr S_3$ | 
| Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) | 
| Exponent: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \) | 
| $\operatorname{Aut}(H)$ | $A_4:D_6^2$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) | 
| $W$ | $A_4\times D_6$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $90$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $A_5\times S_3\wr S_3$ |