Properties

Label 77760.p.27.a1
Order $ 2^{6} \cdot 3^{2} \cdot 5 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_4\times A_5$
Order: \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(7,9), (1,9,5,6,7,8)(2,3,4)(10,11)(12,13), (1,6)(7,9), (5,8)(7,9), (1,8,7,6,5,9)(2,4,3)(10,14,13), (1,8)(3,4)(5,6)(7,9), (1,8,9)(2,4,3)(5,7,6)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times S_4\times S_5$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$S_4\times A_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times S_4\times A_5$
Normal closure:$A_5\times S_3\wr S_3$
Core:$A_5$
Minimal over-subgroups:$A_5\times S_3\wr S_3$
Maximal under-subgroups:$C_2^3:\GL(2,4)$$S_4\times A_5$$S_4\times A_5$$C_2\times D_4\times A_5$$D_6\times A_5$$A_4^2:C_2^2$$D_{10}\times S_4$$D_6\times S_4$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$A_5\times S_3\wr S_3$