Properties

Label 77760.p.1440.p1
Order $ 2 \cdot 3^{3} $
Index $ 2^{5} \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Index: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,9,6,7,4,2)(3,8,5), (3,5,8), (1,2,4,7,6,9)(3,5,8)(11,12,14), (1,4,6)(2,7,9)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Ambient group ($G$) information

Description: $A_5\times S_3\wr S_3$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\wr S_3\times S_5$, of order \(155520\)\(\medspace = 2^{7} \cdot 3^{5} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3^2\times C_6$
Normalizer:$C_2\times S_3^3$
Normal closure:$A_5\times C_3^3:S_4$
Core:$C_1$
Minimal over-subgroups:$C_6^2:C_6$$S_3\times C_3^3$$C_3^2\times D_6$$C_3^2\times D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2:D_6$$C_3^2\times D_6$
Maximal under-subgroups:$C_3^3$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$

Other information

Number of subgroups in this autjugacy class$180$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$A_5\times S_3\wr S_3$