Subgroup ($H$) information
Description: | $C_3^2\times S_6$ |
Order: | \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \) |
Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Generators: |
$\langle(1,6)(2,5)(3,4)(7,14,11)(8,13,10)(9,15,12), (7,10,15)(8,12,14)(9,11,13), (1,2,3,4,5)(7,11,14)(8,10,13)(9,12,15), (7,9,8)(10,11,12)(13,14,15)\rangle$
|
Derived length: | $1$ |
The subgroup is normal, a semidirect factor, nonabelian, and nonsolvable.
Ambient group ($G$) information
Description: | $C_3^2:D_6\times S_6$ |
Order: | \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \) |
Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian, nonsolvable, and rational.
Quotient group ($Q$) structure
Description: | $D_6$ |
Order: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3.S_3\wr C_2.A_6.C_2^2$ |
$\operatorname{Aut}(H)$ | $S_6.C_2\times \GL(2,3)$ |
$W$ | $D_6\times S_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $C_3^2:D_6\times S_6$ |