Properties

Label 77760.bo.12.b1
Order $ 2^{4} \cdot 3^{4} \cdot 5 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times S_6$
Order: \(6480\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 5 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(1,6)(2,5)(3,4)(7,14,11)(8,13,10)(9,15,12), (7,10,15)(8,12,14)(9,11,13), (1,2,3,4,5)(7,11,14)(8,10,13)(9,12,15), (7,9,8)(10,11,12)(13,14,15)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is normal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $C_3^2:D_6\times S_6$
Order: \(77760\)\(\medspace = 2^{6} \cdot 3^{5} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3.S_3\wr C_2.A_6.C_2^2$
$\operatorname{Aut}(H)$ $S_6.C_2\times \GL(2,3)$
$W$$D_6\times S_6$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2:D_6\times S_6$
Complements:$D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$ $D_6$
Minimal over-subgroups:$\He_3\times S_6$$C_3:S_3\times S_6$$C_3\times S_3\times S_6$$C_3\times S_3\times S_6$
Maximal under-subgroups:$C_3^2\times A_6$$C_3\times S_6$$C_3\times S_6$$C_3^2\times S_5$$C_3^4:D_4$$A_4:C_6^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^2:D_6\times S_6$