Properties

Label 7776.jv.96.a1
Order $ 3^{4} $
Index $ 2^{5} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\wr C_3$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $c^{2}d^{2}e^{6}, e^{8}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2\times S_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_6\times S_4$
Normalizer:$C_6^3:S_3^2$
Complements:$C_2^2\times S_4$
Minimal over-subgroups:$C_3^4:C_3$$C_3^3:C_6$$C_3^3:S_3$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:C_6$$C_3^3:S_3$$C_3^3:S_3$
Maximal under-subgroups:$C_3^3$$\He_3$$C_9:C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-96$
Projective image$C_6^3:S_3^2$