Subgroup ($H$) information
| Description: | $C_3\wr C_3$ |
| Order: | \(81\)\(\medspace = 3^{4} \) |
| Index: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$c^{2}d^{2}e^{6}, e^{8}$
|
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_6^3:S_3^2$ |
| Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
| Description: | $C_2^2\times S_4$ |
| Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $S_4^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
| Outer Automorphisms: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^2.C_3^4.C_2^5$ |
| $\operatorname{Aut}(H)$ | $C_3^3:D_6$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \) |
| $W$ | $C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-96$ |
| Projective image | $C_6^3:S_3^2$ |