Properties

Label 7776.jv.1.a1
Order $ 2^{5} \cdot 3^{5} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Index: $1$
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ae^{16}, c^{3}d^{3}, c^{2}d^{2}e^{6}, e^{14}, e^{9}, b^{3}, b^{2}d^{4}, e^{6}, d^{2}, d^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_6^2.C_3^4.C_2^5$
$W$$C_3^3:S_3\times S_4$, of order \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^3:S_3^2$
Complements:$C_1$
Maximal under-subgroups:$C_3^3:C_6\times S_4$$A_4\times C_3^3:D_6$$C_6\wr C_3:S_3$$C_3^3:S_3\times S_4$$C_6^3:D_6$$C_6^3:D_6$$C_3^2:D_6\times S_4$$C_{18}:C_6\times S_4$$C_2\times C_3^3:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^3:S_3\times S_4$