Properties

Label 7776.jv.54.cn1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4\times D_9$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $ad^{3}e^{16}, e^{6}, c^{2}d^{4}e^{10}, b^{3}d^{3}, c^{3}d^{3}, e^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times D_{36}:C_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$D_{18}:C_6$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_{36}:C_6$
Normal closure:$C_6^3:S_3^2$
Core:$C_2\times C_6$
Minimal over-subgroups:$D_{36}:C_6$$D_9\times S_4$$D_4\times D_{18}$
Maximal under-subgroups:$C_2\times D_{18}$$C_9:D_4$$C_4\times D_9$$D_{36}$$D_4\times C_9$$C_2\times D_{18}$$C_9:D_4$$S_3\times D_4$

Other information

Number of subgroups in this autjugacy class$72$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$C_6^3:S_3^2$