Properties

Label 7776.jv.12.c1
Order $ 2^{3} \cdot 3^{4} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times A_4\times \He_3$
Order: \(648\)\(\medspace = 2^{3} \cdot 3^{4} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $d^{3}, c^{3}d^{3}e^{9}, e^{6}, b^{2}d^{4}, e^{9}, c^{2}d^{2}e^{6}, d^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $\PSU(3,2).C_6^2.D_6$
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6^3:S_3^2$
Complements:$D_6$ $D_6$
Minimal over-subgroups:$C_6^3:C_3^2$$C_2\times S_4\times \He_3$$C_6^2:C_6^2$$C_2\times \He_3:S_4$
Maximal under-subgroups:$A_4\times \He_3$$C_6^2:C_6$$C_2^3\times \He_3$$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_6$$C_6\times \He_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-6$
Projective image$C_3^3:S_3\times S_4$