Properties

Label 7776.jv.108.g1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{18}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ae^{16}, e^{6}, c^{3}, e^{9}, c^{2}d^{2}e^{4}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $C_6\times \GL(3,2)$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$W$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{18}$
Normalizer:$C_2\times D_{36}:C_6$
Normal closure:$C_9:C_6\times S_4$
Core:$C_6$
Minimal over-subgroups:$C_6.C_6^2$$C_2^2\times D_{18}$$C_{18}:D_4$$D_4\times C_{18}$
Maximal under-subgroups:$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2\times C_{18}$$C_2^2\times C_6$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_3^3:S_3\times S_4$