Properties

Label 7776.gl.108.kz1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:S_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(10,11)(12,13), (1,8,9)(2,6,3)(4,5,7), (2,5)(3,7)(4,6)(8,9)(11,12)(14,15), (10,12)(11,13), (1,6,4)(2,7,9)(3,5,8)(11,13,12)(14,16,15)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_6^2.S_3^3$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2.C_3^4.C_2^3$
$\operatorname{Aut}(H)$ $C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_6^2:D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_6^2:D_6$
Normal closure:$C_3^4:S_4$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_3^2:S_4$$C_3^2:S_4$$S_3\times S_4$
Maximal under-subgroups:$C_3\times A_4$$C_3:D_4$$S_4$$C_3:S_3$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^2.S_3^3$