Properties

Label 7776.ga.9.g1
Order $ 2^{5} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_6:S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(5,7,6)(10,13,17)(11,18,15)(12,14,16), (10,17,13)(11,15,18)(12,16,14), (1,4,2) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_6^2:C_6.C_2^3\times S_3$
$W$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^3:D_6$
Normal closure:$C_6^3:S_3^2$
Core:$C_6^2:C_2^2$
Minimal over-subgroups:$C_6^3:D_6$
Maximal under-subgroups:$C_6\times S_3\times A_4$$C_6^2:D_6$$C_6^2:D_6$$A_4:S_3^2$$C_2\times C_6:S_4$$D_6^2:C_2$$D_6\times S_4$$C_6:S_3^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times C_3^3:S_4$