Properties

Label 7776.ga.54.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:C_2^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4)(2,3), (8,9), (10,17,13)(11,15,18)(12,16,14), (6,7)(8,9), (5,7,6)(10,13,17)(11,18,15)(12,14,16), (1,2)(3,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^2:S_3$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_3^2:\GL(2,3)$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $S_3\times C_2^4:\GL(3,2)$, of order \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^3$
Normalizer:$C_6^3:S_3^2$
Minimal over-subgroups:$D_6\times C_6^2$$D_6\times C_6^2$$C_6\times S_3\times A_4$$C_2^2:C_9\times D_6$$D_6^2:C_2$
Maximal under-subgroups:$C_2\times C_6^2$$C_6\times D_6$$C_6\times D_6$$C_6\times D_6$$C_6\times D_6$$C_2^2\times D_6$$C_2^3\times C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times C_3^3:S_4$