Properties

Label 7776.ga.108.c1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{2} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,4)(2,3), (10,17,13)(11,15,18)(12,16,14), (6,7)(8,9), (5,7,6)(10,13,17)(11,18,15)(12,14,16), (1,2)(3,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_3^2:D_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Outer Automorphisms: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length: $3$

The quotient is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6^3$
Normalizer:$C_6^3:S_3^2$
Minimal over-subgroups:$S_3\times C_6^2$$S_3\times C_6^2$$C_6^2:C_6$$C_6^2.C_6$$C_6^2:C_2^2$$D_6:D_6$
Maximal under-subgroups:$C_6^2$$C_6\times S_3$$C_6\times S_3$$C_2\times D_6$$C_2^2\times C_6$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_6^3:S_3^2$