Subgroup ($H$) information
Description: | $C_6^2.S_4$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\langle(1,2,4,3)(6,7)(11,12,15,14,18,16)(13,17), (11,15,18)(12,14,16), (1,2,4) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is nonabelian and monomial (hence solvable).
Ambient group ($G$) information
Description: | $C_6^3:S_3^2$ |
Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^4.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_3^2.S_4\times S_4$ |
$W$ | $C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $18$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $1$ |
Projective image | $S_3\times C_3^3:S_4$ |