Properties

Label 7776.ga.9.c1
Order $ 2^{5} \cdot 3^{3} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(1,2,4,3)(6,7)(11,12,15,14,18,16)(13,17), (11,15,18)(12,14,16), (1,2,4) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^2.S_4\times S_4$
$W$$C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2.S_4$
Normal closure:$C_6^3:S_3^2$
Core:$C_6^2.C_6$
Minimal over-subgroups:$C_6^3:D_6$$C_6^3.D_6$
Maximal under-subgroups:$C_6^2.A_4$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2:D_4$$C_2^3:D_{18}$$D_{18}:C_6$

Other information

Number of subgroups in this autjugacy class$18$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$S_3\times C_3^3:S_4$