Properties

Label 7776.ga.8.b1
Order $ 2^{2} \cdot 3^{5} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.C_6^2$
Order: \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(10,17,13)(12,14,16), (8,9), (11,15,18)(12,14,16), (6,7)(8,9), (5,6,7)(11,15,18)(12,16,14), (1,4,2)(5,6,7)(10,16,18)(11,17,14)(12,15,13), (12,14,16)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $(C_3^2\times \He_3).C_2^4$
$W$$C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_2\times C_3^3:S_3^2$
Normal closure:$C_6\wr C_3\times S_3$
Core:$D_6\times C_3^3$
Minimal over-subgroups:$C_6\wr C_3\times S_3$$C_2\times C_3^3:S_3^2$
Maximal under-subgroups:$C_3^4:C_6$$C_3^4:C_6$$D_6\times C_3^3$$C_3^2.C_6^2$$D_6\times \He_3$$C_3^2.C_6^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$S_3\times C_3^3:S_4$