Properties

Label 7776.ga.1296.b1
Order $ 2 \cdot 3 $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(8,9), (10,17,13)(11,15,18)(12,16,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6^2:S_3^2$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6\wr C_3\times S_3$
Normalizer:$C_6^3:S_3^2$
Minimal over-subgroups:$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_3\times C_6$$C_{18}$$C_{18}$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$D_6$$D_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times C_3^3:S_4$