Properties

Label 7776.ga.432.b1
Order $ 2 \cdot 3^{2} $
Index $ 2^{4} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(10,17,13)(12,14,16), (8,9), (11,15,18)(12,14,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $A_4:S_3^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\times C_6^2:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$S_3\times C_6^3$
Normalizer:$C_6^3:S_3^2$
Minimal over-subgroups:$C_3^2\times C_6$$C_3^2\times C_6$$C_3^2\times C_6$$C_2\times \He_3$$C_2\times \He_3$$C_9:C_6$$C_9:C_6$$C_6^2$$C_6^2$$C_6^2$$C_6\times S_3$$C_6\times S_3$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$648$
Projective image$S_3\times C_3^3:S_4$