Properties

Label 7776.ga.72.s1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{18}:C_6$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(10,17,13)(12,14,16), (8,9), (11,15,18)(12,14,16), (6,7)(8,9), (1,2,4)(10,18,14,13,15,16,17,11,12)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, nilpotent (hence solvable, supersolvable, and monomial), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $C_6^3:S_3^2$
Order: \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_3^2:S_3^2$, of order \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
$W$$C_3^2:S_3$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2\times C_3^3:D_6$
Normal closure:$C_6^3.C_6$
Core:$C_3\times C_6$
Minimal over-subgroups:$C_6^2.A_4$$C_3^2.C_6^2$$C_3^2.C_6^2$$D_{18}:C_6$
Maximal under-subgroups:$C_9:C_6$$C_9:C_6$$C_6^2$$C_2\times C_{18}$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$3$
Projective image$S_3\times C_3^3:S_4$