Subgroup ($H$) information
| Description: | $S_3\times C_6^2$ | 
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) | 
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) | 
| Generators: | $\langle(1,4)(2,3)(6,7)(8,9), (10,17,13)(12,14,16), (8,9), (11,15,18)(12,14,16), (5,7,6)(11,18,15)(12,16,14), (1,2)(3,4)\rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_6^3:S_3^2$ | 
| Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^4.C_2^4$ | 
| $\operatorname{Aut}(H)$ | $D_6.S_4^2$, of order \(6912\)\(\medspace = 2^{8} \cdot 3^{3} \) | 
| $W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $S_3\times C_3^3:S_4$ | 
