Subgroup ($H$) information
Description: | not computed |
Order: | \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Index: | \(3\) |
Exponent: | not computed |
Generators: |
$\langle(1,4)(2,3), (10,17,13)(12,14,16), (8,9), (11,15,18)(12,14,16), (6,7)(8,9) \!\cdots\! \rangle$
|
Derived length: | not computed |
The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $C_6^3:S_3^2$ |
Order: | \(7776\)\(\medspace = 2^{5} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^4.C_2^4$ |
$\operatorname{Aut}(H)$ | not computed |
$W$ | $C_6:S_3^2$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $3$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $S_3\times C_3^3:S_4$ |